Dua batang silinder Pejal AB dan BC akan disambung pada titik B menggunakan teknik pengelasan seperti yang ditunjukkan pada gambar diatas. jika tegangan normal tidak boleh melebihi 25 ksi pada setiap batang, Maka berapakah nilai diameter d1 dan d2 terkecil yang diperbolehkan disetiap batang.
Guru Solution (a)
\begin{aligned} [b] P\ & = & \ 12\ +\ 10\ =\ 22\ kips\\ \sigma_{AB}& = & 25\ ksi\\A_{AB}& = & \ \frac{\pi}{4}d_1^2\ \\ d_1& = & \sqrt{\frac{4P}{\pi\sigma_{AB}}}\\ \ \ \ \ \ \ & = & \sqrt{\frac{\left(4\right)\bullet\left(22\right)}{\pi\bullet25}}\\ \ \ \ \ \ \ & = & \sqrt{\frac{88}{78,5398163397}}\\\ \ \ \ \ \ & = & \sqrt{1,1205\ {in}^2}\\\ \ \ \ \ \ & = & 1,059\ in \end{aligned} Guru Solution (b)\begin{aligned} [t] P\ & =& \ 10\ kips\\ \sigma_{AB}&=& 25\ ksi\\A_{BC}&=& \ \frac{\pi}{4}d_2^2\ \\ d_2 &=&\sqrt{\frac{4P}{\pi\sigma_{BC}}}\\ \ \ \ \ \ \ &=&\sqrt{\frac{\left(4\right)\bullet\left(10\right)}{\pi\bullet25}}\\\ \ \ \ \ \ &=&\sqrt{\frac{40}{78,5398163397}}\\\ \ \ \ \ \ &=&\sqrt{0,5093\ {in}^2}\\\ d_2&=&0,714\ in\end{aligned}
Guru Solution (a)
\begin{aligned} [b] P\ & = & \ 12\ +\ 10\ =\ 22\ kips\\ \sigma_{AB}& = & 25\ ksi\\A_{AB}& = & \ \frac{\pi}{4}d_1^2\ \\ d_1& = & \sqrt{\frac{4P}{\pi\sigma_{AB}}}\\ \ \ \ \ \ \ & = & \sqrt{\frac{\left(4\right)\bullet\left(22\right)}{\pi\bullet25}}\\ \ \ \ \ \ \ & = & \sqrt{\frac{88}{78,5398163397}}\\\ \ \ \ \ \ & = & \sqrt{1,1205\ {in}^2}\\\ \ \ \ \ \ & = & 1,059\ in \end{aligned} Guru Solution (b)\begin{aligned} [t] P\ & =& \ 10\ kips\\ \sigma_{AB}&=& 25\ ksi\\A_{BC}&=& \ \frac{\pi}{4}d_2^2\ \\ d_2 &=&\sqrt{\frac{4P}{\pi\sigma_{BC}}}\\ \ \ \ \ \ \ &=&\sqrt{\frac{\left(4\right)\bullet\left(10\right)}{\pi\bullet25}}\\\ \ \ \ \ \ &=&\sqrt{\frac{40}{78,5398163397}}\\\ \ \ \ \ \ &=&\sqrt{0,5093\ {in}^2}\\\ d_2&=&0,714\ in\end{aligned}
Tidak ada komentar:
Posting Komentar